Friday, November 14, 2014

Rosetta Orbiter in Wake of Comet 67P

AG/CFD (Actual Geometry) Analysis performed by Stallion 3D with HIST for #SimulationFriday.

Stallion 3D took just seconds (with no need for pre-processing) to automatically import, grid and begin the compressible Navier-Stokes analysis of the water vapor, ice particles and dust streaming past the Rosetta orbiter in the wake of Comet 67-P’s.

Close up of the orbiter geometry in Stallion 3D.  

Analysis for the arbitrary geometries was performed on a on an HP Pavillion Laptop (Quad-Core) for a total of 4 hours.
Streamline of the flow past the Rosetta Orbiter

Rosetta image Credit:

More information can be found at

Thanks for reading.

Thursday, September 25, 2014

Stallion 3D Lift/Drag Study

Stallion 3D is a modern  aerodynamics and computational fluid dynamics (CFD) analysis software tool.  The software allows users to bypass the time-consuming grid generation step and setup their problem for analysis in just a matter of a few seconds.  Stallion 3D is the best tool for aerodynamics analysis of arbitrary geometries on your MS Windows PC.

The following pictures are results obtain using Stallion 3D for  a lift and drag study of the DLR F4 wing-body.    The geometry was obtained from NASA OpenVsp hangar. Extensive data for this study was obtained from NASA 1st Drag Prediction Workshop (DPW1).  The url is:

Only 500,000 computation cells were used for the present Stallion 3D analysis.  Results were obtained after 4 hours of computation time for each angle of attack using a laptop computer under MS Windows.  To speed-up the simulations, two cases were run simultaneously on the laptop.  This allowed a complete study in less than 24 hours.

Stallion 3D pressure distribution for DLR F4 at 2 deg angle of attack

CL versus angle of attack.  Results are from Stallion 3D
and CFL3D (as reported during DPW1).

Lift vs. Drag for the DLR F4 wing body.  Since the 
Euler equations was used for Stallion 3D, the graph shows 
pressure drag (CD_pres) for Stallion 3D.  This is compared
against the total drag from CFL3D and the experiments.

Pressure coefficient a station along the wing at 2 deg angle of attack.
The lines are for results obtained  by CFD3D as presented at DPW1.

More information about Stallion 3D can be obtained from

Thanks for reading.  Do not hesitate to telephone us at (352) 240-3658 or email at if you have any questions.

Friday, September 19, 2014

Five Benefits of Interactive Airplane Design

Its amazing how quickly a designer can compose a working airplane with 3DFoil, our interactive analysis and design tool.  The following video shows how airfoils and 3D planform shapes work together to size & determine stability of a new designs.

Since interactive is a word that is often used to describe computer programs, I would like to list 5 benefits that 3DFoil brings to interactive aircraft and hydrofoil design.

Benefit 1:  The airfoils are all built into the program.  Unlike other CAD software, you do not have to browse the web to find airfoil shapes for your new designs.

Benefit 2:  You can analyze the airfoils on the fly.  You can test and compare candidate airfoils in a matter of second using the built-in airfoil analysis tool.  Compare  Cl, Cd, moments and the angle for maximum lift of your airfoil shapes.

Benefit 3: Interactive means using the airfoils in 3D wing planform shapes and immediately getting the lift, drag (vortex and profile) and moments.  As shown in the video, this only take a few seconds.

Benefit 4: An airplane is like a bicycle (the Wright brothers built bicycles).  It must support a payload and it should be properly balanced in flight.  This means interactively determining both the longitudinal and lateral stability derivatives to ensure the performance of your design.

Design and analysis of kite-surfacing canopy.

Benefit 5: 3DFoil interactive means that you will have something concrete to show for your efforts. The software can export both .dxf files of the airfoils and a 3D .STL file of the surfaces.  You can use these for 3D-printing a fully working prototype for wind tunnel testing.

More information about 3DFoil can be found at

Thanks for reading.  Do not hesitate to contact us at (352) 240-3658 for more information.

Wednesday, September 17, 2014

Aerodynamics of a Hand Launched UAV

The business for small hand launched UAVs can be quite lucrative.  Make no mistake, however, theses aircraft are not high-priced model (toy) airplanes that you can just sell to the government.  UAVs that are highly coveted for surveillance work by private and government organizations must be extremely durable (tough), all weather and have the range and endurance to fulfill their mission. They must also be quiet.

3D Analysis using Stallion 3D.  Colors show surface pressure.

The above specifications presents a myriad of conflicting design requirements that must be successfully navigated by the UAV aerodynamics engineer.  The aerodynamics software by Hanley Innovations is the only suite of programs that equips the designer with a set of tools to complete their tasks in a timely manner.  For example, Stallion 3D, a full-fledged aerodynamics software package, requires no user grid generation.  The workflow to setup a simulation takes seconds and the software runs on an ordinary PC or laptop computer under the familiar MS Windows environment.  The following video shows the process.

Video shows how to efficiently analyze a UAV using Stallion 3D

Requirements for a successful UAV design include:
1. Airfoils with good lift/drag ratio and soft stall characteristics
2. A wing/body (fuselage) combination that provides high lift and low induced drag.
3.  Good longitudinal stability characteristics (marginally stable UAVs are difficult to fly and gets damaged during landing and takeoff).
4. Good lateral stability characteristics and damping derivatives.

More information about our suite of software can be found a  You may also call us at (352) 240-3658.

Thanks for reading.

P.S. Our airfoil analysis software starts at only $29 (they predict  the angle of attack for maximum lift and separation). More information can be found at:

Wednesday, September 3, 2014

5 Tedious CFD Chores You Can Skip with HanleyCFD

The hallmark of any process innovation is the elimination of a significant step (or number of steps) from the workflow and yet maintain (or improve) the high standards of the final product.  Hanley Innovations CFD products (HanleyCFD) remove the grid generation step from your workflow during the computational fluid dynamics, CFD, analysis of your product.  This speeds up the design process and gives you an advantage over the competition.

Since saying automated gridding is a honor that all software can boast (we are using a computer for CFD after all), here are 5 tasks and worries  you can definitely leave behind when you analyze your designs using HanleyCFD.

1.  Grid Quality Worries
There is no need for worrying about grid quality.  Every single cell in a HanleyCFD grid is Cartesian, i.e.a rectangular hexahedron (my old notes from 18.335 say that these are the best grids for CFD). Furthermore, there is no overhead in transforming the 3-D Navier-Stokes and Euler equations to conform to a surface fitted grid.  You can solve them the way nature intended (in Cartesian form).

Comparison of Cartesian Euler Solver & Potential Flow in MultiElement Airfoils 5.

2. Small Features Can Stay
A small nick, scratch or bump on a CAD surface mesh can send an extrusion based grid generation process awry.  It is the painful equivalent of bare footing a tack (or Lego piece) on an otherwise smooth floor.  With HanleyCFD, there is no need for a time consuming cleanup of the CAD surface. Small features can stay and save you time in the analysis work flow.

3. Dealing with Small Acute Angles & Paper Thin Surfaces in the Geometry
You can just ignore these cute little triangles with HanleyCFD.  CFD based on tetrahedral grids can have accuracy problems if they encounter these features.  Increasing the mesh resolution can often exacerbate the problem and lead the solver down an endless inverted oblivion. The following  video shows how Stallion 3D,  the HanleyCFD flagship, deals with a geometry mired in small acute angles.

Watch this video to see the workflow from analyzing difficult geometries.

4.  The Debate Over Important Geometry Features
HanleyCFD helps you to avoid the long debate (with yourself or team members) whether or not a geometry feature is important to the analysis and the physics of the flow.  Keeping a feature translates to more time performing the mesh generation. By removing the feature, you can miss an important physical result.  HanleyCFD will analyze the feature without the extra time spent for mesh generation.

5.  Modification of the Geometry That's in your Mind
Too often, you are forced to modify your design to appease cost and time constraints of the analysis workflow.  With HanleyCFD, you have no problems analyzing the concepts that can change the world.

Stallion 3D analysis of Wright Flyer (TurboSquid model).

HanleyCFD and Stallion 3D can be purchased at  Please call us at (352) 240-3658 for more information.

Thanks for reading.

Tuesday, August 5, 2014

Onera M6 Wing Revisited

Stallion 3D uses an automatic Cartesian grid to provide the best accuracy and computational efficiency when compared to the topology of other grids.  The grid is automatically generation and the process is invisible to the user during the workflow.

Stallion 3D offers users the option to create simulation sizes ranging form quick (about 60,000 cells) to detailed (about 2,00,000 cells).   The Quick run allows users to preview how well a geometry performs before committing to a larger flow model size.  The results below were obtain from two different simulation sizes.  The first one is about 440,000 cells and is referred to as the coarse grid in the graphs.  The second model is about 1,600,000 cells and is referred to the fine grid.

A drop down box allows user to select the size of the simulation.

Stallion 3D accepts 3D solid models in the .stl format.  The stl file reader allows users to scale, rotate and position the model in the flow field.  The stl file of the Onera M6 wing  for this example is obtained from NASA OpenVSP.

The simulation parameters are setup with the well know case of M=0.84 and an angle of attack of 3.06 degrees.  The result below shows the pressure on the surface of the wing for the fine grid case.

Analysis of Onera M6 Wing. V=288 m/s. Angle of Attack = 3.06 degrees

Cp at the 20% span location. 

Cp at the 44% span location.

Cp at the 65% span location.

Cp at the 90% span location.

Cp at th 95% span location.

Stallion 3D compute forces and coefficients by integrating the pressure at the surface.  This often provides good results for the lift and pressure drag.  Caution must be taken when using this option if the model consists of a small number of facets or the geometry has a significant number of inwardly facing facets normal.

Stallion 3D Forces integrated on the geometry (Facets)
No. Cells
          CL          CD (Pressure)
Coarse Grid
Fine Grid
CFL 3D**
0.0172 (total)
Results Table for Faceted Surface Force Integration.

Another option for finding the forces (especially when the geometry is questionable) is to use the Cartesian front option.  This is a boundary consisting of the outward faces of the Cartesian cells closest to the geometry.  To find the forces, the momentum equation is evaluated on the cell faces (Cartesian Front).  This method provides good results for fine grids.  In any case, the results for both methods of force integration should agree with each other.

Forces integrated on the Cartesian Front (Momentum Equation)
No. Cells
CD (Pressure)
Coarse Grid
Fine Grid
CFL 3D**
0.0172 (total)
Results Table for Cartesian Front Force Integration

More information about Stallion 3D can be found at

Related Article:
Onera M6 Wing, Star of CFD,

 CFL 3D Viscous Calculations: **

Do not hesitate to email or telephone us at (352) 240-3658 if you have any questions.
Thanks for reading.

Saturday, July 26, 2014

Stepping Up Your Aerodynamics Conceptual Analysis

At Hanley Innovations, we develop software tools that enables you to easily transform your ideas into actual flying prototypes.  One way to get your idea to work is to start with a concept about which you are quite certain, I mean really, really confident (an airfoil, for example), and then, like the Science Channel suggest, you Build It Bigger.

VisualFoil Enables You to Clarify Airfoil Concepts Before
Moving On to the Next Step. Airfoil Analysis Starts at $29

With a family of airfoils in hand (because no one can fly in 2-dimensions), the concept steps up to a wing (because birds have them and .... they can fly very well).  The next simple step is to extrude your airfoil (s) into a 3-D surface to support your weight at various flight speeds.  What is soon realized is that other surfaces of various shapes, sizes & orientation (which use your original airfoil concepts) are need to help balance your design in flight (stability). Stability depends in part on weight distribution (center of gravity) over the entire (what we can now call) airplane with respect to the neutral point (similar to aerodynamic center) location.

3DFoil Can Be Used to Design  Multiple Wings
and Workout Weight and Stability Issues.

For most people, trial by 3DFoil, results in concepts which you print, template and fly.  But what if, just what if you still want to Build it Even Bigger.  Stallion 3D can be used to take concepts even further.  The program can actually read-in your project files from 3DFoil and further the analysis of your concept. The video shows how Stallion 3d imports and analyzes a kite that was created in 3DFoil or MultiSurface Aerodynamics.

Stallion 3D will Read-In MultiSurface Aero/3DFoil Files for Detailed 3D Analysis

The next time your have a BIG idea, do not hesitate to visit Hanley Innovations to Build It Even Bigger.

The Aerodynamics Class Pack combines airfoil, wing and the Stallion 3D software and the modules can be accessed your entire class on their individual PC over the course of one year.

You may also call us at (352) 240-3658.

Thanks for reading.

Monday, July 21, 2014

Hanley Innovations initiates Just-In-Time Pricing for CFD

Hanley Innovations initiates Just-In-Time Pricing for CFD with $295 per month for Stallion 3D with HIST.

Invariably, pricing-out engineering software for a project becomes a distressing scenario. Concrete conditions on lengths of lease times for software packages are frequently either too long or too short for particular projects. Compounding the issue is the task of piecing together separate integrated software packages and the inescapable hours and days of wrangling grids and points onto a surface.

In response, Hanley Innovations has initiated Just-In-Time Pricing for CFD to further our commitment to facilitate a company’s or school’s lean manufacturing practices. Stallion 3D contains the novel algorithm HIST (Hanley Innovations Surface Treatment) which reduces your workflow to seconds. The program features fully automatic invisible gridding and Navier-Stokes and Euler solvers that handles viscous flows on complex arbitrary geometries on your laptop.

Stallion 3D effortlessly handles a CAD file size of 100,000 facets on a 64-bit computer. In ONE day with Stallion 3D with HIST, you will be able to purchase, set-up, and get a full 2.5 million analysis run. Full technical support is offered throughout the entire time of your lease
About Stallion 3D
Stallion 3D with HIST is a fully automatic, All-In-One, software package for analyzing 3D complex geometries in fluid flows (gas or liquid). The software allows you to perform aerodynamics analysis on just your laptop or desktop computer. It employs a novel computational fluid dynamics (CFD) technique HIST that solves the fluid equations and produces plots of pressure, velocity, Mach number and temperature. The software also computes the lift, drag moments and related forces acting on your 3D CAD geometry.

More information about Stallion 3D can be found at or by calling (352) 240-3658.

Monday, July 7, 2014

What is Stallion 3D with HIST - exactly?

What is Stallion 3D with HIST?
Stallion 3D is a fully automatic, All-In-One, software package for analyzing 3D complex geometries in  fluid flows (gas or liquid).  The software allows you to perform aerodynamics analysis  on just your laptop or desktop computer.  It employs a novel computational fluid dynamics (CFD) technique that solves the fluid equations and produces plots of pressure, velocity, Mach number and temperature. The software also computes the lift, drag moments and related forces acting on your 3D CAD geometry.

Analysis of Porsche using Stallion 3D. CAD file obtained from

What is HIST?
HIST is the acronym for Hanley Innovations Boundary Treatment. It is a propriety CFD technique that applies the flow boundary conditions to arbitrary geometries immersed in a Cartesian Grid. HIST can handle both inviscid and viscous (no-slip) boundary conditions.  It can be used to solve subsonic, transonic and supersonic flow problems.

Stallion 3D Solution of Laminar Flow over a Tapered Wing.

Why is the program referred to as an “All-In-One”?
Stallion 3D does not require the purchase of additional software for pre- and post processing. . It handles everything from reading in a CAD model to graphing and tabulating the results of your aerodynamics/CFD analysis.

Is HIST similar to other grandfather or newer CFD solvers on the market freeware?
The HIST solver is entirely new and robust enough to capture shock waves and analyze viscous flows.

Is Stallion 3D with HIST,  an interface software,  to use with pre-existing Cartesian software program?
It is not an interface program. It is an All-in-One aerodynamics & CFD program for analyzing CAD geometries in a flow field.

How long does it take for someone to setup a problem for analysis in Stallion 3D? 
Setting-up,  literally, takes.... just seconds. 

Do I have to mesh a grid at any time?
Stallion 3D specifically eliminates the need for our customers to grid because of HIST, our invisible meshing feature.

Do I need to purchase a pre-processor or mesh generating software for  Stallion 3D?
No. Grid generation is built into Stallion 3D.

Do I need to purchase a separate solver to analyze the geometry?
No. It is built-in already in Stallion 3D. Stallion 3D is equipped with algorithms to solve the full 3D compressible Euler & Navier-Stokes equations.  The analysis is valid for low and high speed flows of liquids and gasses.

Laminar flow analysis over a golf ball using Stallion 3D.

Do I need to purchase post processing or separate graphic package to see the graphics after the simulation is finished?
No.  It is built-in already in Stallion 3D.

What are the workflow steps for Stallion 3D? 
1. Insert watertight CAD picture. (takes just a few seconds)
2. Add your parameters (Flow speed, angle of attack, ground effect or rotation  take just a few moments to specify in Stallion 3D.)
3. Stallion 3D will fully and accurately mesh and set-up your grid and begin the analysis.
4. Once the flow is analyzed, the program will automatically have your results ready for you to view or save.

Analysis of rotor blade (also from with quasi-steady rotation. Stallion 3D 
performs gridding, computations and post processing for complex 3D geometries.

Hardware Requirements?
Laptop running the 64 bit version of Windows XP, 7 or 8 (8.1).

Does the program use a cloud to run simulations?
We do not use a cloud for running simulations. You can do all of your work on your laptop.

What is the general maximum number of cells that can be run for a Windows  simulation?
2.5 million cells.

What are the current prices for Stalllion 3D with HIST as of July 2014?
Please visit for current prices.

How soon do I receive the Stallion 3D after ordering?
The same day.  Please call us at (352) 240-3658 or visit to place your orders.

If I purchase the popular 3 month lease subscription, can I apply what paid for the 3 month lease to a 12 month lease?
You can upgrade to  a 12 month lease, with the 3 month credit.

More information about Stallion 3D can be found at

Thanks for reading.

Saturday, June 28, 2014

An Overview of CFD Vision Goals for 2030

But....really...why wait?

Five CFD 2030 Wish-List Ideas Currently Available at Hanley Innovations

Wish 1.) A Revolutionary Algorithm. 
It is universally agreed, that a new algorithm is essential to handle the increasing complexity of geometries presented for analysis in today's engineering arena.

Hanley Innovations Surface Treatment (HIST) is the propriety algorithm developed to respond to the uncompromising demands of your research.

Analysis of the DLR F11 High Lift Configuration on a HP Pavilion dv6

With HIST powering Stallion 3D, you can perform serious external CFD on your laptop at work or home.

HIST handles complex CAD geometries, subsonic, transonic and supersonic regimes and viscous (no-slip) boundary conditions.

Wish 2.)  Seamless Integration.
Today's standard CFD workflow process for analyzing an object requires expert juggling of several different software packages. Stallion 3D with HIST is seamless and is the only 3D program that completely sets-up... in seconds.

Stallion 3D with HIST eliminates the need for you to learn how to mesh and overlay grids, pay for extra software, and spend days in training just to get your work completed on time.

Wish 3.) Invisible Meshing
Everyone understands why CFDers need invisible meshing in their CFD program.

Stallion 3D's invisible meshing capabilities, affords the CFD community the opportunity to focus on other aspects of their workload and research, rather than taking hours and subsequent days setting-up a CAD geometry.

Stallion 3D Cartesian Grid at a Station Along the Span of the DLR F11 

Stallion 3D with HIST is genuinely invisible, and most importantly, our results correspond to validation wind tunnel testing runs from NASA, so there is no stress in wondering about the accuracy of your results derived from our program.
Undoubtedly, Stallion 3D is the easiest CFD program on the market.

You never again have to overlay additional grid shapes, add points, subtract areas, build-up bumps, eye-ball, or cross your fingers to increase accuracy when generating your mesh.

 Wish 4.) High Powered Computers
Admittedly, all the mention of future computing hardware possibilities, mentioned in the 2030 AIAA presentation was enough to make anyone drool.

Today, though our children may not be impressed with computers, us over 50 years old, personally know how far hardware has progressed beautifully .

Stallion 3D with HIST  allows you to do serious calculations on your laptop. An average set-up of 2 million cells can be completely loaded into the program

Wish 5.) Organized Data Collection
Once your simulation has finished your simulation, all the pertinent results are automatically tabulated for you.


1. Slotnick,Jeffrey, et. al., "CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences",

2. 2nd AIAA CFD High Lift Prediction Workshop,

3. 3D CFD simulation performed using Stallion 3D. Please visit Prices start at $890.

More Information

Please visit or telephone (352) 240-3658 for more information.
Thanks for reading.

Sunday, April 27, 2014

Supersonic Aerodynamics

Years ago, the X-15 was an experimental aircraft for testing futuristic supersonic and hypersonic space plane concepts such as the space shuttle orbiter.

I used Stallion 3D to do a quick comparison of an X-15 CAD model at  two flight Mach numbers, M=3.5 and M=6.0.  The model of the X-15 was taken from NASA OpenVSP hanger.  The results are shown below:

    X-15:  In the top picture M=3.5.  The Mach number is 6.0 in the picture at the bottom.

The following link has a very interesting article on the X-15 aerodynamics:  If you are interested in developing airplane concepts, NASA OpenVSP is a good option.  More information can be found at

The .stl output of OpenVSP can be read directly in Stallion 3D for rapid aerodynamics analysis (no external grid generation).  More information can be found at

Do not hesitate to email or telephone me at (352) 240-3658 if you have any questions. Thanks for reading.