Saturday, January 7, 2017

Corvette C7 Aerodynamics


The CAD file for the Corvette C7 aerodynamics study in Stallion 3D version 4 was obtained from Mustafa Asan revision on GrabCAD.  The file was converted from the STP format to the STL format required in Stallion 3D using OnShape.com.

Once the Corvette was imported into Stallion 3D, I applied ground effect and a speed of 75 miles per hour at zero angle of attack.  The flow setup took just seconds in Stallion 3D and grid generation was completely automatic.  The software allows the user to choose a grid size setting and I chose the option the produced a total of 345,552 cells in the computational domain.

I chose the Reynolds Averaged Navier-Stokes (RANS) equations solver for this example.  In Stallion 3D, the RANS equations are solve along with the k-e turbulence model.  A wall function approach is used at the boundaries.

The results were obtained after 10,950 iterations on a quad core laptop computer running at 2.0 GHz under MS Windows 10.


The results for the Corvette C7 model  are summarized below:

Lift Coefficient:  0.227
Friction Drag Coefficient: 0.0124
Pressure Drag Coefficient: 0.413
Total Drag Coefficient: 0.426

Stallion 3D HIST Solver:  Reynolds Averaged Navier-Stokes Equations
Turbulence Model: k-e
Number of Cells: 345,552
Grid: Built-in automatic grid generation

Run time: 7 hours

The coefficients were computed based on a frontal area of 2.4 square meters.

The following are images of the same solution from different views in Stallion 3D.  The streamlines are all initiated near the ground plane 2 meters ahead of the car.

Top View



Side View


Bottom View


Stallion 3D utilizes a new technology (Hanley Innovations Surface Treatment or HIST) that enables design engineers to quickly analyze their CAD models on an ordinary Window PC.  We call this SameDayCFD. This unique technology is my original work and was not derived from any existing software codes.  More information about Stallion 3D can be found at:


Do not hesitate to contact us if you have any questions.  More information can be found at  http://www.hanleyinnovations.com

Thanks for reading.

About Patrick Hanley, Ph.D.
Dr. Patrick Hanley is the owner of Hanley Innovations. He received his Ph.D. degree in fluid dynamics for Massachusetts Institute of Technology (MIT) department of Aeronautics and Astronautics (Course XVI). Dr. Hanley is the author of Stallion 3D, MultiSurface Aerodynamics, MultiElement Airfoils, VisualFoil and the booklet Aerodynamics in Plain English.



No comments:

Post a Comment